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Thickness perturbations (free film surfaces are curved out-of-phase) and bending 
perturbations (the surfaces are curved in phase) can be propagated over free fluid films 
[i, 2]. The pattern of bending perturbations on plane free water films and aqueous polymer 
solutions is investigated theoretically and experimentally in this paper (a continuation of 
[3]). Films are considered in which the unperturbed flow is radial. Smai!perturbation 
equations are derived in the form of axisymmetric traveling and standing waves. Patterns 
are computed for the constant-phase lines, perturbation-wave reflections from free boundary 
edges of the film, and the growth of the perturbation amplitude is analyzed. It is shown 
that internal stresses in the fluid due to its elastic properties can be estimated from the 
bending perturbationpattern. The stresses and effectivevalues of the viscositymeasured in the 
experiment exceed the corresponding values in water films by 3-4 orders. 

i z. Equations of Small BendinK Perturbations Being Propagated over a Disc-Shaped Film. 
We consider a free film to be produced either upon fluid descent from a miniature plane 
circular target on which a cylindrical jet streams along the normal, or upon fluid issuance 
from an orifice in the form of an elongated slot with rounded-off edges [i-4]. We limit 
ourselves to cases when the film curvature due to gravity is negligibly small, where the 
film is either circular or is a sector of a disc-shaped film bounded by free edges [3]. We 
examine two kinds of bending perturbations: I - nonstationary perturbations generated by 
target or cap vibrations along the normal to the film (traveling waves), the constant-phase 
lines are circular (Fig. la); ii - stationary perturbations that are nonsymmetric relative 
to the disc axis of symmetry and whose sources are defects at the target or cap exit (Fig. ib) 
(standing waves). Both kinds of perturbations result in curvature of the film middle surface~ 

It is natural to describe the fluid motion in this case within the framework of a 
quasi-two-dimensional approach when all the quantities are averaged over the film thickness 
that is assumed thin. The system of quasi-two-dimensional continuity and momentum equations 
for thin free films has been obtained in [5, 6]. We introduce an r, 8 polar coordinate 
system with origin on the target axis or at the velocity pole [3] so that V~ = V~(r), V~ = 0 
for the unperturbed flow. For small perturbations, after linearizing the continuity and 
momentum equations, the projection of the latter equation on the normal to the film middle 
surface is separated out and has the form 

(i.i) 
prh' * ~ ~ ~- 2p~h*V~. ~ ~ + prn'*"*~vr ~r ~ ~ = (a~rh + 2ar) ar --~z + 

Here t is the time, X is the perturbation wave amplitude, p is the density, h* is the unper- 
turbed film thickness (disc-shaped films become thinner with distance from the target or 
cap exit), V* r is the radial velocity of the fluid in the film, o* rr and o~8 are the radial 

and azimuthal internal stresses in the fluid (the asterisks denote the ~nperturbed flow 
parameters everywbere), and a is the fluid surface tension coefficient. 

Equation (i.i) is valid for fluid films with arbitrary rheological behavior in the pre- 
sence of small perturbation waves of both kinds. For an ideal fluid (water), V* = V 0 = 

r 
const (V 0 is the fluid velocity at the target or cap exit), ~ = ~88 = 0; here the in: 

equality rh* = R0H 0 follows from the continuity equation for a stationary film, where R 0 is 
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Fig. i 

the radius of the target (cap) exit, and H 0 if the film thickness at the exit. 

As the model of an elastic-viscous fluid we take the Maxwellian model with upper 
convective derivative [7]. The unperturbed flow parameters are determined by integrating 
the equations of film dynamics [3] 

r h  V r  rohoVo,. 

pr'ohoVo ~v* ,~ t �9 . , ~  * 4 r  = ~ r  t , o=ra  ] - -  ooeh*,: 
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( 1 . 2 )  

(~zz' e ~*rr and T~8 are the stress deviators in the film, the z axis is normal to the plane of 

the unperturbed film, and ~ and I are the viscosity and relaxation time of the fluid) the 
first of which is the continuity equation, the second expresses the momentum balance in 
the radial direction, and the following three are rheological. We take as a first approxi- 
mation that for r0 ! r ! R (r0 is a certain value of the radius) the flow at the target 
or within the cap is generated just as in a free film, while the friction losses on the 
solid surface are small. Here (1.2) are integrated under the conditions 

* * (1.3) V~ = ~ ,  h *  = ho,  ~ =  = ~oo = O, r = r o. 

2. Small Axis~mmetric Bending Perturbations on a Water Film (Type I). In this case 
a/~8 = 0 and there are no deviator stresses in the fluid. In dimensionless variables (i.i) 
takes the form 

a2X § 2~ § I aX (2.1) 

Here R0 and R0/V0 are used as length and time scales, and the Weber number We =PhoVo2/(2~). 

The characteristics of the hyperbolic equation (2.1) satisfy 

- - = l ~ -  
dt  

( 2 . 2 )  

For i ! r < We the perturbations are transferred from the target or cap exit, and the Cauchy 
problem for (2.1) is posed with the conditions 

% ---- Xo e~ ' ,  ~ 0;. r = i .  ( 2 . 3 )  
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The harmonic perturbation frequency ~l (a real number ~ = ~iR0/Y0) and the angle of film 
descent from the exit are given. 

Setting x(r, t) = ~(r)exp(i~t) in conformity with (2.3), we obtain a Bessel equation 
for ~(r) from (2.1), for which the solution is 

V-W%) + = k - W ' ; /  

�9 ~ %'=  i. 

(2.4) 

The constant coefficients Cx and C2 are determined by the conditions (2.3), where C is 
generally not equal to zero. Correspondingly, as r § We - 0, ~ = const(l - r/We) 2~Wei + 
const and the perturbation amplitude is not continuous for r = We as a function cos[2mWe 
in(l - r/We)]. The impossibility of continuing the perturbed solution in the domain 
r > We in a physically reasonable class of continuous functions indicates that the unper- 
turbed flow under consideration in the form of a monotonically thinning film cannot generally 
exist for r > We. Indeed, in conformity with [!], for r = We an annular free edge occurs, 
an unloading wave ridge due to the surface tension forces. The water film is here ruptured 
into drops and the disc exists only in the domain 1 ! r < We. 

The solution (2.4), expressed in terms of Bessel functions of imaginary order, is not 
convenient for description of the wave propagation. Consequently, we construct a solution 
for the shortwave perturbations (e = ~-I << I) in the domain 1 < r < We independently of 
(2.4). Introducing the variable ~ = t + We in(l - r/We), D = r-and-representing the desired 
perturbation amplitude in the form X = ~(r)exp(i~) while taking account of (2.3), we have 
from (2.1) 

r)~.__ ~, @ i--~ ~ + 
r/We - 

-- r/We @ = O. 
(2.5) 

Finding the solution of (2.5) as e ~ 0 in the domain, where 1 - r/We = O(i) by using the 
asymptotic method of many scales [8], we obtain 

x=r-:/~exp ico t + W e l n  i--W~ D lexp --!co "2]P~W-'e+ 
(2.6) 

In conformity with (2.6), the perturbations carried over by the characteristics are D'Alembert 
waves with amplitude decreasing as r -I/~ and Dz and D 2 are constants. In the boundary layer 
where (i - r/We) = O(e), we have by finding the solution of (2.5) by the method of many 
scales 

X = exp{ i6o [ t  + we lnsy]} (E. exp[, o We in y)] + (2.7) 

Here El and E 2 are constants, and the perturbation wave amplitude in the boundary layer is 
constant. 

Going over to the internal variable y in the external solution (2.6) as e + 0, we 
obtain 

(2.8) 
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Comparing (2.8) and (2.7), we see that juncture of the external and internal solutions (2.6) 
and (2.7) is achieved for 

E1 ----- We-1/4 D1 exp [io(--2We In 2 + 2We + We In e) ], 

E2 = We-l/aDz exp [--~c0(--2We ln2 + 2We + We In e)1. 

(2 .9 )  

The remaining undetermined constants D l and D 2 (in terms of which E I and E 2 are expressed 
in conformity with (2.9)) are evaluated upon substituting (2.6) into condition (2.3). It is 
easy to see that in conformity with (2.7) for r = We the amplitude X experiences a break in 
continuity as does the exact solution (2.4). 

Introducing the wave number k = ~/(dr/dt) and the wavelength s = 2~/k, by using (2.2) 
we find 

(s is referred to R0). The length of one of the waves grows during propagation from the 
target or cap exit, while the other decreases, becoming zero for r = We. 

3. Stationary Bending Wave (Type II). Going over to dimensionless variables as in 
Sec. 2, we write (i.I) in the form 

r/a~Z 1 a~Z I 0Z (3 .1)  
1 - -  W 6 / ~  r w e  o0 3 = W'6 ~ "  

for type II perturbations (a/at = o) in the case of an ideal fluid. This is an equation of 
mixed type: hyperbolic for 1 < r < We, and elliptic for r > We. The conditions of the 
Cauchy problem for (3.1) will be - 

X = X0 e~*~ OX/Or ---- 0, r = I. (3.2) 

We seek the solution of (3.1) in the form X = eiSOO(r) �9 In the case of shortwave perturba- 
tions which are of greatest interest, e = s -I << I, and we obtain from (3.1) 

(3.3) ( r )  ~' , 
~ "  t ~ - - ~ T ~ ' + ~ q ~ = O .  

Using the  method of  many , sca l e s  to  f i n d  the  s o l u t i o n  of  (3 .3 )  as e § 0 in the  domain where 
1 - r/We = 0 ( 1 )  > O, we have 

arcsin (W ~ - -  t)1 + D, exp :/ WWe ei,O{Dlexp[~ s 2r [_i, arcsin(w2_[r e ~)]}. (3.4) 
"X = V{ ----~-V~e 

Here DI and D 2 are constant coefficients. The perturbations are propagated along the charac- 
teristics of (3.1) as D'Alembert waves with the variable amplitude ~(W~Ve)/(i--r/We). This 
corresponds to the result in [i]. Two families of cardioids are the characteristics. 

In the boundary layer near the line r = We, where (i - r/We)/e = y = O(i) > 0, the 
solution of (3.1) constructed by using (3.3) in the many-scales method has the form 

X = Y-*~ e~sO[E~ exp (/2~ + E~ exp (--~2~]. (3.5) 

Going over to the internal variables y in (3.4), we obtain the external solution in internal 
variables as E + 0 

X = y-1[4ei'~ [~ (si-~ - + 2~)] + Dss-ll'exp[--i(s~ +2 ~)]}. (3.6) 

which shows that the external and internal solutions (3.4) and (3.5) merge for 

E,= Dts-'14exp (i,--~-), E, = D~8-Lt4exp (--i,,-~.). (3.7) 
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Fig. 2 

The coefficients Dz and D 2 are determined by using condition (3.2) after which E I and E 2 are 
calculated from (3.7). 

The solution obtained shows that for r = We (y = 0 in (3.5)), the amplitude of the 
type II bending perturbations becomes infinite on the line where the change in the type of 
equation occurs, which again indicates destruction of the film. 

The propagation lines for the type II bending perturbations for a Maxwell fluid are in 
agreement with two families of characteristics of (i.i) for 8/8t = 0: 

d r  = d -  p V ~ 2 h ,  - , �9 . (yrr h - -  2c~ 

(3.8) 

These equations should be integrated with the condition e = 81, r = Ro, where 81 is the 
angular coordinate of the source of perturbations. The unperturbed flow parameters, de- 
picted with asterisks in (3.8), are determined by integrating (1.2) with the conditions (1.3). 

Let us examine the results of the numerical integration of (1.2) and (3.8) for two 
waves produced by a perturbation source located at 81 = 0 (at the middle of the slit cap exit) 
in the case of outflow of a Maxwellian fluid. It is considered that the cap is a sector of 
a circle with central angle 30 ~ in planform. The fluid flow in the unperturbed film is 
characterized by two parameters: K = ~/(p~v~) and Re = r0v0p/~; equation (3.8) introduces 
an additional parameter We = ph0v~/(2~). The plus sign in (3.8) corresponds to first family 
waves, and the minus sign to second family waves. The film is constrained by free edges- 
ridges in which unloading of the fluid occurs due to the surface and elastic forces [3]. 
The shape of the free edges is considered as in [3]. 

The results of computations corresponding to values of the parameters We = 1.96"10 ~, 
Re = 14, K = 0.51"i0 -s are represented in Fig. 2a. The elastic forces are dominant for 
such values of the parameters, and the role of the surface-tension force in comparison is 
small. In this case the shape of both the free edges and of the type II perturbation lines 
is determined by mainly the elastic forces. The film is shown in plan view in Fig. 2a (the 
flow near the cap exit is shown in the inset in the diagram); it is constrained by the free 
edges 1 and 2 originating at the edges of the cap exit with dumbbell cross-section. The 
Ox I axis is the axis of symmetry of the film middle surface and the quantity r 0 (xl = 
r cos %, Yl = r sin 8) was used as scale of the Ox I and Oyl axes. It is assumed that 
R0/r 0 = 5, and the fluid mass-flow rate in the free edge at the cap exit is Ql = 0.1r0v0h0. 
The ending wave of the first family 3 issuing from the cap exit at the point A encounters 
the free edge 1 at the point B where it is reflected as a secondary family wave 4. This 
wave is propagated until it meets the free edge 2 (symmetric to I), where a new reflection 
occurs in the form of a first family wave, etc. On the other hand, the second family wave 
5 emerging from the point A and being reflected from the free edge 2 is propagated as a first 
family wave 6 until it meets the free edge 1 at the point C where it should produce a new 
reflection, etc. In the presence of one or more perturbation sources at the cap exit, the 
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Fig. 3 

whole film will be delineated by perturbation lines being reflected successfully from free 
edges, as is also observed in experiment (Fig. 2b). 

4. Experimental Investigation. The dependence of the mode of the stationary type II 
perturbation waves on the internal stresses permits the determination of the internal 
stresses in viscoelastic fluid films by means of the stationary wave patterns therein. 
Measurements performed by this method are therefore an instrument for the investigation of 
internal stresses of viscoelastic fluid in a flow with strong tension (azimuthal in the 
case of a film). In tests, as in [3], the slit cap formed a plane radially outflowing 
film constrained by two boundary jets (Fig. 3). The flow is strictly radial. Films of 
aqueous polyacrylamide solutions AMF (PAA) of 0.02% and 0.04% concentrations were investi-, 
gated, and an ideal fluid film (water) as a comparison test. 

We introduce into the considerations the angle 2u between two perturbation waves of 
different families at their intersection. Since tan 7 = rde/dr, we obtain from (3.8) 

1 + ~eh*/2~ 2a 
sin2 ? = W e : l  1 + (%o* - -  ~ ,2 ' W e ~ l  = PV~ ~h* ' -  ( 4 . 1 )  

Here We I is the local Weber number dependent on r. For an ideal fluid sin27 = Wel -I The 
d i f f e r e n c e  b e t w e e n  s i n 2 u  a n d  We~ 1 i n d i c a t e s  n o t i c e a b l e  i n t e r n a l  s t r e s s e s  i n  t h e  f l u i d .  
Since o68 >> o* rr in viscoelastic fluid films (tension in the azimuthal direction), we have 
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Fig. 5 

a formula to calculate the magnitude of the stress from (4.1) 

, s in  s y - -  W e ~  1 ( 4 . 2 )  
O'ee = p V  *~ " '. 

-- s in  z ? 

To find the changes in We I in a film, the fluid flow velocities were measured therein 
by the method of tracking particles (hydrogen bubbles) and the method of imposing perturba- 
tions by a vibrator and also of measuring the specific mass flow rate in the film h'V* by 

' r 
using a cuvette. The film perturbations were markers in the fluid when utilizing the method 
of imposing perturbations by a vibrator. It was assumed that the perturbations were removed 
by the stream with the film velocity. No changes in the flow velocity in the film were noted 
in all the cases under investigation, which indicates the smallness of the additional 
stresses as compared with the dynamic head pV .2. The flow rate in water and polyacrylamide 

r 
solution films turned out to be the same within the limits of measurement error, namely, 
v 0 = 380 + i0 cm/sec, which agrees with thedata on measuring the total fluid flow rate in 
a film (taking boundary jets into account) whose magnitude is Q = 14.3 ~ 0.4 cm3/sec. 

Bending perturbations were generated artificially to determine the quantity sin27 in 
the film on its axis of symmetry. This was realized by means of a thin air jet issuing from 
the needle of the sprayer. Two waves (lines of constant phase, see Fig. 3) were propagated 
from that point of the film on which the jet impinged. These waves were photographed in 
reflected light, and the angle between them 27 at the point of wave intersection was found 
on the negative by means of a measuring microscope (i.e., at the point on the film at which 
the air jet impinged). Because the constant phase lines are not straight (by virtue of the 
change in film thickness as well as because of a possible change in the stress), the random 
error in measuring the angle was significant. 

The results of measuring the dependences of sin2u and Wel I on r in water and PAA solu- 
tion films are presented, respectively, in Figs. 4 and 5, where the points are sin=7 and 
the lines We[ z, and i and the solid line are for 0.02% PAA, and 2 and the dashed line are 
for 0.04% PAA. The quantities sinmy and We[ I agree with a definite degree of accuracy in 
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the water film while in the case of the polymer solutions it is noticeable hhat sin27 is 
substantially greater than We~ I in the film, especially near the cap, despite the signifi- 
cant spread in the data. This indicates the existence of additional stresses in the film, 
whose contribution is commensurate with the surface tension contribution so that we have an 
obvious estimate o* m 2~/h. Setting ~ = 72"10 -3 N/m, h* = 10 -3 m, we obtain o~8 m 102 N/m 2. 

To determine the approximate dependence of the change in the stress o~8 in the film, 
computations were performed utilizing (4.2) in the measured values of sin2#$ We~ I and V*. 

r 

The computed values of the stresses ~ in the film were additionally subjected to a 
smoothing operation on a computer. 

The results are represented in Fig. 6, where the points 1 and 2 are o~8 for 0.02 and 
0.04% PAA and the solid and dashed lines are D88 for 0.02 and 0.04% PAA. The measured 
azimuthal stresses turned out to be quite significant. They are of the order 102-103 N/m 2. 
These stresses drop with distance from the nozzle so that despite the continuing tension 
process in the film, the stresses relax in the main part of the film, and growth of the 
stress occurs during fluid deformation in the cap. 

Results of the experiment indicate that the relaxation time of the solutions under 
investigation does not exceed 5 msec for large deformations. Such an estimate of the relaxa- 
tion time is similar in order of magnitude to the fundamental relaxation time of these 
solutions, determined by the molecular-hydrodynamic model of dilute solutions [9]~ 

Estimates of the stresses originating during deformation in the cap, as performed with 
Hinch-De Gen and Kuhn "dumbbell" models [9, I0], result in values approximately an order below 
those observed in experiment. 

Measurements performed for the velocity field in the film permit evaluation of the 
deformation rate D88 = V~/r (see Fig. 6). Using the quantity D88 we can estimate the effec- 

tive longitudinal viscosity ~i = a~8/D88- It turns out to be three orders above the value of 

the shear viscosity in polymer solutions. This indicates the significant strengthening of 
the fluid during tension of the elastic macromolecular balls in elongation flow in a film. 

In conclusion, we note that the methodology bf the experiment can be perfected by a 
more accurate measurement of the angle of perturbation wave intersection 27, which allows of 
a hope of diminishing the spread in the stress measurements. 
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